一、文章发表
1. Zhu, S.; Wang, X.; Le, J.; An, N.; Li, J.; Liu, D.; Kuang, Y. Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual‐Sites Iron Incorporation. Energy Environ. Mater. 2024, DOI: 10.1002/eem2.12594
2. Gong, H.; An, S.; Qin, W.; Kuang, Y.; Liu, D. Stabilizing BiVO4 Photoanode in Bicarbonate Electrolyte for Efficient Photoelectrocatalytic Alcohol Oxidation. Molecules 2024, DOI: 10.3390/molecules29071554
3. An, S.; Wang, Y.; Qiao, H.; Xiu, H.; Liu, D.; Kuang, Y. Photoelectrocatalytic Reduction of Cr(VI
4. Liu, D.; Kuang, Y. Particle‐Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. Adv. Mater. 2024, DOI: 10.1002/adma.202311692
5. Zhang, J.-X.; Zhao, Z.-Y.; Yang, T.-L.; Yang, J.; Zhang, J.; Liu, Q.-J.; Kuang, Y. Harnessing intrinsic defect complexes for visible-light-driven photocatalytic activity in Delafossite CuAlO2. Acta Materialia 2024, DOI: 10.1016/j.actamat.2024.119801
6. He, F.; Liu, Y.; Yang, X.; Chen, Y.; Yang, C.-C.; Dong, C.-L.; He, Q.; Yang, B.; Li, Z.; Kuang, Y.; Lei, L.; Dai, L.; Hou, Y. Accelerating Oxygen Electrocatalysis Kinetics on Metal–Organic Frameworks via Bond Length Optimization. Nano-Micro Lett. 2024, DOI: 10.1007/s40820-024-01382-9
7. Li, Y.; Zhu, S.; Le, J.-B.; Lu, J.; Wang, X.; Chen, L.; Ding, H.; Chen, K.; Li, M.; Du, S.; Wang, H.; Zhang, R.; Persson, P. O. Å.; Hultman, L.; Eklund, P.; Kuang, Y.; Chai, Z.; Huang, Q. A-site alloying-guided universal design of noble metal-based MAX phases. Matter 2024, DOI: 10.1016/j.matt.2023.12.006
8. Li, Y.; Zhu, S.; Le, J.-B.; Lu, J.; Wang, X.; Chen, L.; Ding, H.; Chen, K.; Li, M.; Du, S.; Wang, H.; Zhang, R.; Persson, P. O. Å.; Hultman, L.; Eklund, P.; Kuang, Y.; Chai, Z.; Huang, Q. A-Site Alloying-Guided Universal Design of Noble Metal-Based MAX Phases. Matter 2024, 7 (2
9. Wang, Z.; Zhang, W.; Song, Y.; Liu, N.; Chen, L.; An, N.; Liu, D.; Liu, Q.; Shen, S.; Kuang, Y.; Ye, J. Unraveling the Site-Selective Doping Mechanism in Single-Crystalline BiVO4 Thin Films for Photoelectrochemical Water Splitting. J. Phys. Chem. C 2023, DOI: 10.1021/acs.jpcc.3c00146
10. Wang, X.; Wang, Y.; Kuang, Y.; Le, J.-B. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces. J. Phys. Chem. Lett. 2023, DOI: 10.1021/acs.jpclett.3c02108
11. He, F.; Zheng, Q.; Yang, X.; Wang, L.; Zhao, Z.; Xu, Y.; Hu, L.; Kuang, Y.; Yang, B.; Li, Z.; Lei, L.; Qiu, M.; Lu, J.; Hou, Y. Spin‐State Modulation on Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution. Adv. Mater. 2023, DOI: 10.1002/adma.202304022
12. Wang, X.; Kuang, Y.; Le, J.-B. Recent advances in calculating potential of zero charge and Helmholtz capacitance of metal/aqueous solution interfaces from ab initio molecular dynamics. Curr. Opin. Electrochem. 2023, DOI: 10.1016/j.coelec.2023.101341
13. Wu, Y.; Liu, D.; Le, J.; Zhuang, H.; Kuang, Y. Pt Nanoparticle Assisted Homogeneous Surface Engineering of Polymer‐Based Bulk‐Heterojunction Photocathodes for Efficient Charge Extraction and Catalytic Hydrogen Evolution. Small 2023, DOI: 10.1002/smll.202206763
14. Li, Y.; Zhu, S.; Wu, E.; Ding, H.; Lu, J.; Mu, X.; Chen, L.; Zhang, Y.; Palisaitis, J.; Chen, K.; Li, M.; Yan, P.; Persson, P. O. Å.; Hultman, L.; Eklund, P.; Du, S.; Kuang, Y.; Chai, Z.; Huang, Q. Nanolaminated ternary transition metal carbide (MAX phase
15. Liu, G.; Xue, Z.; Zhang, X.; Liu, Q.; Kuang, Y.; He, M.; Xu, J.; Lv, M.; Xiu, H.; Zhai, G.; Liu, D.; Xia, Y.; Dai, N.; Dai, M. Multifunctional Multigate One-Transistor with Thin Advanced Materials, Logic-in-Memory, and Artificial Synaptic Behaviors. ACS Appl. Mater. Interfaces 2023, DOI: 10.1021/acsami.3c10366
16. Le, J.-B.; Chen, A.; Kuang, Y.; Cheng, J. Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization. Natl. Sci. Rev. 2023, DOI: 10.1093/nsr/nwad105
17. Wu, Y.; Liu, D.; Zhuang, H.; Le, J.; Kuang, Y. High-performance bulk heterojunction-based photocathode with facile architecture for photoelectrochemical water splitting. Chin. Chem. Lett. 2023, DOI: 10.1016/j.cclet.2022.04.078
18. Zhu, S.; Li, Y.; Liu, D.; Huang, Q.; Kuang, Y. Excellent CoOxHy/C oxygen evolution catalysts evolved from the rapid In situ electrochemical reconstruction of cobalt transition metals doped into the V2SnC MAX phase at A layers. ACS Appl. Energy Mater. 2023, DOI: 10.1021/acsaem.2c03810
19. Wang, X.; Wang, Y.; Kuang, Y.; Le, J.-B. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces. J. Phys. Chem. Lett. 2023, 14 (35
20. Wang, X.; Wang, Y.; Kuang, Y.; Le, J.-B. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces. J. Phys. Chem. Lett. 2023, 14 (35
21. Wang, X.; Kuang, Y.; Le, J.-B. Recent Advances in Calculating Potential of Zero Charge and Helmholtz Capacitance of Metal/Aqueous Solution Interfaces from Ab Initio Molecular Dynamics. Curr. Opin. Electrochem. 2023, 40, 101341. DOI: 10.1016/j.coelec.2023.101341.
22. Su, T.-T.; Wang, X.; Wang, K.; Gao, X.-J.; Le, J.-B.; Ren, W.-F.; Sun, R.-C. Renewable Galactomannan-Based Biogums with Structure Regulation to Protect Zinc Metal Anodes via Blocking and Confinement Effect. Int. J. Biol. Macromol. 2023, 245, 125597. DOI: 10.1016/j.ijbiomac.2023.125597.
23. Chen, X.; Wang, X.-T.; Le, J.-B.; Li, S.-M.; Wang, X.; Zhang, Y.-J.; Radjenovic, P.; Zhao, Y.; Wang, Y.-H.; Lin, X.-M.; Dong, J.-C.; Li, J.-F. Revealing the Role of Interfacial Water and Key Intermediates at Ruthenium Surfaces in the Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2023, 14 (1
24. Su, T.-T.; Wang, K.; Shao, C.-Y.; Le, J.-B.; Ren, W.-F.; Sun, R.-C. Surface Control Behavior toward Crystal Regulation and Anticorrosion Capacity for Zinc Metal Anodes. ACS Appl. Mater. Interfaces 2023, 15 (16
25. Li, X.-Y.; Jin, X.-F.; Yang, X.-H.; Wang, X.; Le, J.-B.; Cheng, J. Molecular Understanding of the Helmholtz Capacitance Difference between Cu(100
26. Zhu L, Yin B, Zhang Y, et al. A Multifunctional Coating on Sulfur-Containing Carbon-Based Anode for High-Performance Sodium-Ion Batteries. Molecules. 2023;28(8
27. Pan L, He H, Yan Q, Hu P. Ultra-strong zinc-ion adsorption layer constructed by zeolite molecular sieve for advanced aqueous zinc-ion batteries. J Power Sources. 2023;571:233090. DOI: 10.1016/j.jpowsour.2023.233090
28. Li Y, Tu J, He H, Qiao Z, Ruan D. Insights into Enhanced Cycling and Rate Stability of LiNi 0.88 Co 0.09 Al 0.03 O 2 via Co-doping for Lithium-Ion Batteries. ACS Appl Energy Mater. 2023;6(3
29. Zhang Y, Zhu L, Xu H, et al. Interlayer-Expanded MoS2 Enabled by Sandwiched Monolayer Carbon for High Performance Potassium Storage. Molecules. 2023;28(6
30. Zhang Y, Yin B, Ma M, et al. Constructing high K+ concentration layer to expedite K+ intercalation in graphite: towards superior rate capability without trading off power density of potassium-ion batteries. Materials Today Energy, 2023, 34: 101315. DOI: 10.1016/j.mtener.2023.101315
31. Duan H, Xu H, Wu Q, et al. Silicon/graphite/amorphous carbon as anode materials for lithium secondary batteries. Molecules, 2023, 28(2
32. Xu H, Cheng B, Du Q, et al. Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries. Nano Research, 2023, 16(8
33. Huang S, Li Z, Liu Z, et al. Surface enrichment of redox mediator for long-cyclable lithium–air batteries . Energy & Fuels, 2023, 37(15
34. Xiu, H.; Gao, T.; An, N.; Wang, Y.; Zhou, Y.; Qi, X.; Liu, D.; Kuang, Y. Universal Deposition Strategy of Nanoporous Complex Oxide Thin Films for Photoelectrochemical Applications. ACS Appl. Energy Mater. 2022, DOI: 10.1021/acsaem.2c00470
35. Fu, S.; Sun, N.; Le, J.; Zhang, W.; Miao, R.; Zhang, W.; Kuang, Y.; Song, W.; Fang, J. Tailoring defects regulation in air-fabricated CsPbI3 for efficient inverted all-inorganic perovskite solar cells with voc of 1.225 V. ACS Appl. Mater. Interfaces 2022, DOI: 10.1021/acsami.2c07420
36. Hou, H.; Yang, W.; Sun, H.; Zhang, H.; Feng, X.; Kuang, Y. Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. Catal. Lett. 2022, DOI: 10.1007/s10562-022-04217-7
37. Cheng, B.; Li, X.; Xu, H.; Zhu, L.; Zhang, Y.; Yin, B.; Ma, M.; Kuang, Y.; He, H.; Hu, D. Strengthen Synergistic Effect of Soft Carbon and Hard Carbon Toward High-Performance Anode for K-Ion Battery. ACS Appl. Mater. Interfaces 2022, DOI: 10.1021/acsami.2c05633
38. Cao, Y.; Qiao, H.; Zou, Y.; An, N.; Zhou, Y.; Liu, D.; Kuang, Y. Room Temperature Electrodeposition of Ready-to-Use TiOx for Uniform p-n Heterojunction Over Nanoarchitecture. Front. Chem. 2022, DOI: 10.3389/fchem.2022.832342
39. Chen, A.; Le, J.-B.; Kuang, Y.; Cheng, J. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics. J. Chem. Phys. 2022, DOI: 10.1063/5.0100678
40. He, F.; Zhao, Y.; Yang, X.; Zheng, S.; Yang, B.; Li, Z.; Kuang, Y.; Zhang, Q.; Lei, L.; Qiu, M.; Dai, L.; Hou, Y. Metal–Organic Frameworks with Assembled Bifunctional Microreactor for Charge Modulation and Strain Generation toward Enhanced Oxygen Electrocatalysis. ACS Nano 2022, DOI: 10.1021/acsnano.2c02685
41. An, N.; Tian, H.; Zhou, Y.; Zou, Y.; Xiu, H.; Cao, Y.; Wang, Y.; Li, J.; Liu, D.; Kuang, Y. Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting. J. Energy Chem. 2022, DOI: 10.1016/j.jechem.2021.09.023
42. Li, S.; Ma, R.; Xu, S.; Zheng, T.; Fu, G.; Wu, Y.; Liao, Z.; Kuang, Y.; Hou, Y.; Wang, D.; Petkov, P. S.; Simeonova, K.; Feng, X.; Wu, L.-Z.; Li, X.-B.; Zhang, T. Direct Construction of Isomeric Benzobisoxazole–Vinylene-Linked Covalent Organic Frameworks with Distinct Photocatalytic Properties. J. Am. Chem. Soc. 2022, DOI: 10.1021/jacs.2c06042
43. Zhu, S.; Liu, D.; Li, J.; Kuang, Y. Chemical vapor deposition of crystalized nanoscale α-SnWO4 thin films and their photoelectrocatalytic properties. ACS Appl. Energy Mater. 2022, DOI: 10.1021/acsaem.2c02909
44. Zhu, S.; Liu, D.; Lv, L.; Le, J.; Zhou, Y.; Li, J.; Kuang, Y. Charged matrix stabilized cobalt oxide electrocatalyst with extraordinary oxygen evolution performance at pH 7. Electrochim. Acta 2022, DOI: 10.1016/j.electacta.2022.141448
45. Liu, D.; Chen, X.; Qiao, Y.; Zhou, Y.; Kuang, Y. Awakening the photoelectrochemical activity of α-SnWO4 photoanodes with extraordinary crystallinity induced by reductive annealing. Adv. Energy Sustainability Res. 2022, DOI: 10.1002/aesr.202100146
46. Fu, S.; Sun, N.; Le, J.; Zhang, W.; Miao, R.; Zhang, W.; Kuang, Y.; Song, W.; Fang, J. Tailoring Defects Regulation in Air-Fabricated CsPbI 3 for Efficient Inverted All-Inorganic Perovskite Solar Cells with V oc of 1.225 V. ACS Appl. Mater. Interfaces 2022, 14 (27
47. Wang, X.; Le, J. B.; Fei, Y.; Gao, R.; Jing, M.; Yuan, W.; Li, C. M. Self-Assembled Ultrasmall Mixed Co–W Phosphide Nanoparticles on Pristine Graphene with Remarkable Synergistic Effects as Highly Efficient Electrocatalysts for Hydrogen Evolution. J. Mater. Chem. A 2022, 10 (14
48. Cheng, Z.; Le, J.; Wang, J.; Sun, W.; Zheng, L.; Cai, L.; Lu, D.; Shen, Y.; Wu, J.; Fu, F.; Chen, H. Self‐Activation Enables Cationic and Anionic Co‐Storage in Organic Frameworks. Adv. Energy Mater. 2022, 12 (3
49. Li, L.; Liu, Y.-P.; Le, J.-B.; Cheng, J. Unraveling Molecular Structures and Ion Effects of Electric Double Layers at Metal Water Interfaces. Cell Rep. Phys. Sci. 2022, 3 (2
50. Yao, Q.; Le, J.; Yang, S.; Cheng, J.; Shao, Q.; Huang, X. A Trace of Pt Can Significantly Boost RuO2 for Acidic Water Splitting. Chin. J. Catal. 2022, 43 (6
51. Cheng Z, Le J, Wang J, et al. Self‐Activation Enables Cationic and Anionic Co‐Storage in Organic Frameworks. Advanced Energy Materials, 2022, 12(3
52. Zhang, J.; Le, J.; Dong, Y.; Bu, L.; Zhang, Y.; Cheng, J.; Li, L.; Huang, X. Face-Centered Cubic Structured RuCu Hollow Urchin-like Nanospheres Enable Remarkable Hydrogen Evolution Catalysis. Sci. China Chem. 2022, 65 (1
53. Chen, A.; Le, J.-B.; Kuang, Y.; Cheng, J. Modeling Stepped Pt/Water Interfaces at Potential of Zero Charge with Ab Initio Molecular Dynamics. J. Chem. Phys. 2022, 157 (9
54. Li W, Guo Z, Yang J, et al. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem Energy Rev. 2022;5(3
55. Zhao Z, Zhang Y, He H, et al. Bamboo Weaving Inspired Design of a Carbonaceous Electrode with Exceptionally High Volumetric Capacity. Nano Lett. 2022;22(3
56. Cheng B, Li X, Pan L, et al. Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries. Molecules. 2022;27(9
57. Yin B, He H, Lin J, et al. Bichannel design inspired by membrane pump: a rate booster for the conversion-type anode of sodium-ion battery. J Mater Chem A. 2022;10(7
58. He H, Zhang Y, Yin B, et al. Regulating Li-Ion Distribution by the Electrical Double Layer Effect for Dendrite-Free and High-Rate Capability Lithium Metal Batteries. ACS Appl Energy Mater. 2022;5(5
59. Pan L, He H, Liu Z, Hu P. Redistributing zinc-ion flux by constructing a hybrid conductor interface for dendrite-free zinc anode. J Power Sources. 2022;551:232173. DOI: 10.1016/j.jpowsour.2022.232173
60. Cheng B, Li X, Xu H, et al. Strengthen Synergistic Effect of Soft Carbon and Hard Carbon Toward High-Performance Anode for K-Ion Battery. ACS Appl Mater Interfaces. 2022;14(28
61. Egun IL, He H, Hu D, Chen GZ. Molten Salt Carbonization and Activation of Biomass to Functional Biocarbon. Adv Sustain Syst. 2022;6(12
62. Pan L, He H, He H. Two-dimensional nanofluidic suppressing anion mobility toward dendrite-free lithium metal anode. Mater Today Energy. 2022;26:101015. DOI: 10.1016/j.mtener.2022.101015
63. Zhu, S.; Le, J.; Li, J.; Liu, D.; Kuang, Y. Tungsten doped manganese silicate films as stable and efficient oxygen evolution catalysts in near-neutral media. J. Mater. Chem. A 2021, DOI: 10.1039/d1ta01524a
64. Zou, Y.; Le, J.; Cao, Y.; An, N.; Zhou, Y.; Li, J.; Liu, D.; Kuang, Y. Tetragonal tungsten bronze type Sn(II
65. Zou, Y.; Liu, D.; Meng, X.; Liu, Q.; Zhou, Y.; Li, J.; Zhao, Z.; Chen, D.; Kuang, Y. Structural limiting factors of mixed-valent tin oxides in photoelectrochemical application: A comparative exploration. J. Energy Chem. 2021, DOI: 10.1016/j.jechem.2020.08.027
66. Xia, C.; Meng, X.; Chen, X.; Zhou, Y.; Liu, D.; Kuang, Y. Sn2TiO4 photoanodes for near-infrared light-driven water splitting with ultralow onset potentials. ACS Appl. Energy Mater. 2021, DOI: 10.1021/acsaem.1c02643
67. Wang, Y.; Chen, X.; Xiu, H.; Zhuang, H.; Li, J.; Zhou, Y.; Liu, D.; Kuang, Y. General in situ photoactivation route with IPCE over 80% toward CdS photoanodes for photoelectrochemical applications. Small 2021, DOI: 10.1002/smll.202104307
68. Zhang, Q.; Liu, M.; Zhou, W.; Zhang, Y.; Hao, W.; Kuang, Y.; Liu, H.; Wang, D.; Liu, L.; Ye, J. A novel Cl-modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy 2021, DOI: 10.1016/j.nanoen.2020.105651
69. Huang, D.; Wang, K.; Li, L.; Feng, K.; An, N.; Ikeda, S.; Kuang, Y.; Ng, Y.; Jiang, F. 3.17% efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 2021, DOI: 10.1039/d0ee03892j
70. Li, X.-Y.; Chen, A.; Yang, X.-H.; Zhu, J.-X.; Le, J.-B.; Cheng, J. Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/Water Interfaces. J. Phys. Chem. Lett. 2021, 12 (30
71. Le, J.-B.; Cheng, J. Modeling Electrified Metal/Water Interfaces from Ab Initio Molecular Dynamics: Structure and Helmholtz Capacitance. Curr. Opin. Electrochem. 2021, 27, 100693. DOI: 10.1016/j.coelec.2021.100693.
72. Le, J.-B.; Yang, X.-H.; Zhuang, Y.-B.; Jia, M.; Cheng, J. Recent Progress toward Ab Initio Modeling of Electrocatalysis. J. Phys. Chem. Lett. 2021, 12 (37
73. Zou, Y.; Le, J.; Cao, Y.; An, N.; Zhou, Y.; Li, J.; Liu, D.; Kuang, Y. Tetragonal Tungsten Bronze Type Sn( II
74.
75. Ma M, Dai C, Luo K, et al. Magnetohydrodynamic Interface‐Rearranged Lithium Ions Distribution for Uniform Lithium Deposition and Stable Lithium Metal Anode. ChemPhysChem. 2021;22(10
76. Wang M, Ren Z, Lin H, et al. Realizing Compact Lithium Deposition via Elaborative Nucleation and Growth Regulation for Stable Lithium-Metal Batteries. ACS Appl Mater Interfaces. 2021;13(29
77. Luo K, Leng Z, Li Z, et al. Shielded electric field-boosted lithiophilic Sites: A Janus interface toward stable lithium metal anodes. Chem Eng J. 2021;416:129142. DOI: 10.1016/j.cej.2021.129142
78. Li S, Li Z, Huai L, et al. A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes. J Energy Chem. 2021;62:179-190. DOI: 10.1016/j.jechem.2021.03.023
79. Chen W, Hong Y, Zhao Z, et al. Directing the deposition of lithium metal to the inner concave surface of graphitic carbon tubes to enable lithium-metal batteries. J Mater Chem A. 2021;9(31
80. Yu D, Tang Z, He H. Encapsulating Sulfur Into Nickel Decorated Hollow Carbon Fibers for High-Performance Lithium-Sulfur Batteries. Front Energy Res. 2021;8:606529. DOI: 10.3389/fenrg.2020.606529
81. Ren F, Li Z, Huai L, et al. High-loading lateral Li deposition realized by a Scalable Fluorocarbon Bonded Laminates. Carbon. 2021;171:894-906. DOI: 10.1016/j.carbon.2020.09.061
82. Lin H, Chen Z, Wang D, et al. High-performance Li-air battery after limiting inter-electrode crosstalk. Energy Storage Mater. 2021;39:225-231. DOI: 10.1016/j.ensm.2021.04.022
83. Yin B, Liang S, Yu D, et al. Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodium‐Ion Batteries. Adv Mater. 2021;33(37
84. Li Z, Huai L, Li S, et al. Insight into bulk charge transfer of lithium metal anodes by synergism of nickel seeding and LiF-Li3N-Li2S co-doped interphase. Energy Storage Mater. 2021;37:491-500. DOI: 10.1016/j.ensm.2021.02.033
85. Cao, L.; Zhu, S.; Pan, B.; Dai, X.; Zhao, W.; Liu, Y.; Xie, W.; Kuang, Y.; Liu, X. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, DOI: 10.1016/j.carbon.2020.03.015
86. Ni, X.; Zhou, Y.; Tan, R.; Kuang, Y. Fabrication and modification of ferrite photocathodes for photoelectrochemical water splitting. Prog. Chem. 2020, DOI: 10.7536/PC200334
87. Ma, Z.; Hou, H.; Song, K.; Fang, Z.; Wang, L.; Gao, F.; Yang, W.; Tang, B.; Kuang, Y. Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting. Chem. Eng. J. 2020, DOI: 10.1016/j.cej.2019.122266
88. Cao, Y.; Liu, D.; Ni, X.; Meng, X.; Zhou, Y.; Sun, Z.; Kuang, Y. Better charge separation in CuO nanowire array photocathodes: micro-/nanostructure regulation for photoelectrochemical reaction. ACS Appl. Energy Mater. 2020, DOI: 10.1021/acsaem.0c00554
89. Zhou, B.; Le, J.; Cheng, Z.; Zhao, X.; Shen, M.; Xie, M.; Hu, B.; Yang, X.; Chen, L.; Chen, H. Simple Transformation of Covalent Organic Frameworks to Highly Proton-Conductive Electrolytes. ACS Appl. Mater. Interfaces 2020, 12 (7
90. Su, M.; Dong, J.; Le, J.; Zhao, Y.; Yang, W.; Yang, Z.; Attard, G.; Liu, G.; Cheng, J.; Wei, Y.; Tian, Z.; Li, J. In Situ Raman Study of CO Electrooxidation on Pt( Hkl
91. Le, J.-B.; Cheng, J. Modeling Electrochemical Interfaces from Ab Initio Molecular Dynamics: Water Adsorption on Metal Surfaces at Potential of Zero Charge. Curr. Opin. Electrochem. 2020, 19, 129–136. DOI: 10.1016/j.coelec.2019.11.008.
92. Le, J.-B.; Fan, Q.-Y.; Li, J.-Q.; Cheng, J. Molecular Origin of Negative Component of Helmholtz Capacitance at Electrified Pt(111
93. Zhang Z, Li Z, Lin H, et al. Transplantable Carbonaceous Li + Filtrating Membrane for Lithium Metal Protection. ACS Appl Mater Interfaces. 2020;12(27
94. Wang M, Peng Z, Lin H, et al. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling. Acta Phys Chim Sin. 2020;0(0
95. Peng Z, Cao X, Gao P, et al. High‐Power Lithium Metal Batteries Enabled by High‐Concentration Acetonitrile‐Based Electrolytes with Vinylene Carbonate Additive. Adv Funct Mater. 2020;30(24
96. Wang M, Peng Z, Luo W, et al. Improving the Interfacial Stability between Lithium and Solid‐State Electrolyte via Dipole‐Structured Lithium Layer Deposited on Graphene Oxide. Adv Sci. 2020;7(13
97. Ren F, Li Z, Zhu Y, et al. Artificial nucleation sites with stable SEI for Li metal anodes by aggressive Al pulverization. Nano Energy. 2020;73:104746. DOI: 10.1016/j.nanoen.2020.104746
98. Liu, Q.-T.; Liu, D.-Y.; Li, J.-M.; Kuang, Y. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Front. Phys. 2019, DOI: 10.1007/s11467-019-0905-4
99. Kaneko, H.; Minegishi, T.; Kobayashi, H.; Kuang, Y.; Domen, K. Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting. J. Chem. Phys. 2019, DOI: 10.1063/1.5052590
100. Hussain, G.; Pérez-Martínez, L.; Le, J.-B.; Papasizza, M.; Cabello, G.; Cheng, J.; Cuesta, A. How Cations Determine the Interfacial Potential Profile: Relevance for the CO2 Reduction Reaction. Electrochimica Acta 2019, 327, 135055. DOI: 10.1016/j.electacta.2019.135055.
101. Li, C.-Y.; Le, J.-B.; Wang, Y.-H.; Chen, S.; Yang, Z.-L.; Li, J.-F.; Cheng, J.; Tian, Z.-Q. In Situ Probing Electrified Interfacial Water Structures at Atomically Flat Surfaces. Nat. Mater. 2019, 18 (7
102. Wang, Y.; Le, J.; Li, W.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X.; Cheng, J.; Tian, Z.; Li, J. In Situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR
103. Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z. Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Adv. Mater. 2018, DOI: 10.1002/adma.201703005
104. Hayashi, T.; Niishiro, R.; Ishihara, H.; Yamaguchi, M.; Jia, Q.; Kuang, Y.; Higashi, T.; Iwase, A.; Minegishi, T.; Yamada, T.; Domen, K.; Kudo, A. Powder-based (CuGa1−yIny
105. Ma, G.; Kuang, Y.; Murthy, D. H. K.; Hisatomi, T.; Seo, J.; Chen, S.; Matsuzaki, H.; Suzuki, Y.; Katayama, M.; Minegishi, T.; Seki, K.; Furube, A.; Domen, K. Plate-like Sm2Ti2S2O5 particles prepared by a flux-assisted one-step synthesis for the evolution of O2 from aqueous solutions by both photocatalytic and photoelectrochemical reactions. J. Phys. Chem. C 2018, DOI: 10.1021/acs.jpcc.7b12087
106. Kobayashi, H.; Sato, N.; Orita, M.; Kuang, Y.; Kaneko, H.; Minegishi, T.; Yamada, T.; Domen, K. Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 2018, DOI: 10.1039/c8ee01783b
107. Yoshinaga, T.; Saruyama, M.; Xiong, A.; Ham, Y.; Kuang, Y.; Niishiro, R.; Akiyama, S.; Sakamoto, M.; Hisatomi, T.; Domen, K.; Teranishi, T. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts. Nanoscale 2018, DOI: 10.1039/c8nr00377g
108. Le, J.; Cuesta, A.; Cheng, J. The Structure of Metal-Water Interface at the Potential of Zero Charge from Density Functional Theory-Based Molecular Dynamics. J. Electroanal. Chem. 2018, 819, 87–94. DOI: 10.1016/j.jelechem.2017.09.002.
109. Le, J.; Fan, Q.; Perez-Martinez, L.; Cuesta, A.; Cheng, J. Theoretical Insight into the Vibrational Spectra of Metal–Water Interfaces from Density Functional Theory Based Molecular Dynamics. Phys. Chem. Chem. Phys. 2018, 20 (17
110. Kuang, Y.; Yamada, T.; Domen, K. Surface and interface engineering for photoelectrochemical water oxidation. Joule 2017, DOI: 10.1016/j.joule.2017.08.004
111. Higashi, T.; Kaneko, H.; Minegishi, T.; Kobayashi, H.; Zhong, M.; Kuang, Y.; Hisatomi, T.; Katayama, M.; Takata, T.; Nishiyama, H.; Yamada, T.; Domen, K. Overall water splitting by photoelectrochemical cells consisting of (ZnSe
112. Goto, Y.; Minegishi, T.; Kageshima, Y.; Higashi, T.; Kaneko, H.; Kuang, Y.; Nakabayashi, M.; Shibata, N.; Ishihara, H.; Hayashi, T.; Kudo, A.; Yamada, T.; Domen, K. A particulate (ZnSe
113. Niishiro, R.; Takano, Y.; Jia, Q.; Yamaguchi, M.; Iwase, A.; Kuang, Y.; Minegishi, T.; Yamada, T.; Domen, K.; Kudo, A. A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water. Chem. Commun. 2017, DOI: 10.1039/c6cc08262a
114. Le, J.; Iannuzzi, M.; Cuesta, A.; Cheng, J. Determining Potentials of Zero Charge of Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-Theory-Based Molecular Dynamics. Phys. Rev. Lett. 2017, 119 (1
115. Ma, G.; Chen, S.; Kuang, Y.; Akiyama, S.; Hisatomi, T.; Nakabayashi, M.; Shibata, N.; Katayama, M.; Minegishi, T.; Domen, K. Visible light-driven z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J. Phys. Chem. Lett. 2016, DOI: 10.1021/acs.jpclett.6b01802
116. Kuang, Y.; Jia, Q.; Ma, G.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A.; Domen, K. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2016, DOI: 10.1038/nenergy.2016.191
117. Kaneko, H.; Minegishi, T.; Nakabayashi, M.; Shibata, N.; Kuang, Y.; Yamada, T.; Domen, K. A novel photocathode material for sunlight-driven overall water splitting: solid solution of ZnSe and Cu(In,Ga
118. Kuang, Y.; Jia, Q.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K. A front‐illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 2016, DOI: 10.1002/aenm.201501645
119. Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; Shibata, N.; Niishiro, R.; Katayama, C.; Shibano, H.; Katayama, M.; Kudo, A.; Yamada, T.; Domen, K. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, DOI: 10.1021/jacs.5b00256
120. Jiang, F.; Gunawan; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J. Am. Chem. Soc. 2015, DOI: 10.1021/jacs.5b09015
121. Nabae, Y.; Kuang, Y.; Chokai, M.; Ichihara, T.; Isoda, A.; Hayakawa, T.; Aoki, T. High performance Pt-free cathode catalysts for polymer electrolyte membrane fuel cells prepared from widely available chemicals. J. Mater. Chem. A 2014, DOI: 10.1039/c4ta01828a
122. Nabae, Y.; Rokubuichi, H.; Mikuni, M.; Kuang, Y.; Hayakawa, T.; Kakimoto, M.-a. Catalysis by carbon materials for the aerobic baeyer–villiger oxidation in the presence of aldehydes. ACS Catal. 2013, DOI: 10.1021/cs3007928
123. Kuang, Y.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Nanoshell carbon-supported cobalt catalyst for the aerobic oxidation of alcohols in the presence of benzaldehyde: An efficient, solvent free protocol. Appl. Catal., A. 2012, DOI: 10.1016/j.apcata.2012.02.018
124. Kuang, Y.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Solvent‐free aerobic oxidation of alcohols with 1‐methyl‐2‐azaadamantane N‐oxyl as a recyclable catalyst through phase separation. ChemInform 2011, DOI: 10.1002/chin.201146027
125. Kuang, Y.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Solvent free aerobic oxidation of alcohols with 1-methyl-2-azaadamantane N-oxyl as a recyclable catalyst through phase separation. Green Chem. 2011, DOI: 10.1039/c1gc15076f
126. Kuang, Y.; Islam, N. M.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by Carbon‐Based Catalysts: A Nonmetallic Oxidation System. ChemInform 2010, DOI: 10.1002/chin.201018075
127. Kuang, Y.; Islam, N. M.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Selective aerobic oxidation of benzylic alcohols catalyzed by carbon-based catalysts: a nonmetallic oxidation system. Angew. Chem., Int. Ed. 2010, DOI: 10.1002/anie.200904362
128. Kuang, Y.; Rokubuichi, H.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. A nitric acid‐assisted carbon‐catalyzed oxidation system with nitroxide radical cocatalysts as an efficient and green protocol for selective aerobic oxidation of alcohols. Adv. Synth. Catal. 2010, DOI: 10.1002/adsc.201000366
129. Gu, X.; Kuang, Y.; Guo, X.; Fang, J.; Ni, Z. Synthesis and drug release properties of poly(ethylene oxide
130. Zhang, Y.; Fang, J.; Kuang, Y.; Guo, X.; Lu, H.; Yang, P. Wash-free in-situ self-desalting and peptide enrichment by block copolymer analyzed with MALDI-TOFMS. Chem. Commun. 2007, DOI: 10.1039/b710741b
二、专著发表
1. Liu, D. & Kuang, Y. Photoelectrocatalytic Solar Water Splitting. in Photo‐ and Electro‐Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction (ed Ma, J.) 241–274 (Wiley-VCH, 2022).
三、专利授权
序号 | 专利名称 | 国别 | 申请号 |
1 | 一种八面体形貌的铜铁氧材料及其制备方法与应用 | 中国 | 202410227434.9 |
2 | 一种氢气还原的钨酸亚锡纳米材料 | 中国 | 202311316476.1 |
3 | 一种类硅藻土结构的软碳材料及其制备方法和应用 | 中国 | 202310224134.0 |
4 | 一种硅碳复合负极材料及其制备方法和应用 | 中国 | 202211232783.7 |
5 | 一种钾离子电池负极材料及其制备方法 | 中国 | 202210704840.0 |
6 | 无光刻胶制备有机半导体微器件的光刻方法及微器件 | 中国 | 202210225965.5 |
7 | 一种软硬复合碳及其制备方法、应用 | 中国 | 202111574257.4 |
8 | 一种软硬碳复合材料及其制备方法、应用 | 中国 | 202111572036.3 |
9 | 一种多元金属氧化物薄膜及其制备方法与应用 | 中国 | 202111628240.2 |
10 | 一种微波技术合成高比表面三维花状无定形碳材料及其制备方法和应用 | 中国 | 202111345151.7 |
11 | 一种电池隔膜、锂离子电池及电池隔膜的制备方法 | 中国 | 202111349302.6 |
12 | 一种纤维素无机复合膜、耐高温电池隔膜及其制备方法与应用 | 中国 | 202111405836.6 |
13 | 一步法合成的高比表面多级孔碳电极材料及其制备方法和应用 | 中国 | 202111208528.4 |
14 | 一种生物基多孔碳材料的制备方法及应用 | 中国 | 202111233748.2 |
15 | 一种α-钨酸亚锡薄膜及其制备方法与应用 | 中国 | 202110945816.1 |
16 | 一种表面改性的剥离石墨及其制备方法和应用 | 中国 | 202111006868.9 |
17 | 一种大面积镍基电催化剂薄膜及其制备方法与应用 | 中国 | 202110323172.2 |
18 | 一种硫化镉半导体薄膜的界面优化方法及其应用 | 中国 | 202110132844.1 |
19 | 一种石墨烯纳米纤维材料及其制备方法与应用 | 中国 | 202110481061.4 |
20 | 一种异质腔体结构材料及其制备方法与应用 | 中国 | 202010837294.9 |
21 | 一种调控硅酸盐材料微观形貌的方法 | 中国 | 202010158257.5 |
22 | 一种金属有机框架材料及其制备方法与应用 | 中国 | 202010213230.1 |
23 | 一种碳材料、其制备方法和应用 | 中国 | 202010609708.2 |
24 | 一种锂金属电池 | 中国 | 202010053407.6 |
25 | 一种含氟碳材料及其制备方法和应用 | 中国 | 202010109023.1 |
26 | 一种高结晶度钛酸亚锡及其合成方法与应用 | 中国 | 201911145402.X |
27 | 一种两步喷雾热解制备钒酸铋薄膜的方法及应用 | 中国 | 201911040097.8 |
28 | 三维碳材料及其制备方法、应用 | 中国 | 201911042573.X |
29 | 一种高结晶性掺杂纳米钒酸铋颗粒及其制备方法 | 中国 | 201910807761.0 |
30 | 一种锂空气电池硅酸铝陶瓷纤维隔膜的制备方法及应用 | 中国 | 201910459864.2 |
31 | 一种管状石墨烯气凝胶及其制备方法和应用 | 中国 | 201910457753.8 |
32 | 石墨化炭纳米带及其复合材料的制备方法和应用 | 中国 | 201910362221.6 |
33 | 一种固相法合成高结晶铌酸锡的方法 | 中国 | 201811561887.6 |
34 | 一种改性石墨负极材料及其制备方法及含该改性石墨负极的电池 | 中国 | 201811472633.7 |
35 | 改性硅碳材料及其制备方法、应用 | 中国 | 201811472643.0 |
36 | 一种复合锂金属负极的制备方法及含复合锂金属负极的电池 | 中国 | 201811252385.5 |
37 | 石墨化炭管材料及其制备方法和应用 | 中国 | 201810805686.X |
38 | 一种纤维材料及其制备方法和应用 | 中国 | 201810791508.6 |
39 | 一种纳米铆钉核壳结构正极材料及制备方法 | 中国 | 201810673912.3 |
40 | 界面保护结构及其制备方法以及具有该界面保护结构的电池 | 中国 | 201810593883.X |
41 | 一种金属/离子过滤层、其制备方法及其在电池中的应用 | 中国 | 201810608692.6 |
42 | 金属空气电池用添加剂、室温液态氧离子导体电解液及金属空气电池 | 中国 | 201810341417.2 |
43 | 一种核壳材料 | 中国 | 201710748920.5 |
44 | 具有复合包覆层的掺杂钴酸锂及其制备方法和应用 | 中国 | 201710574352.1 |
45 | 电解液添加剂、含添加剂的电解液及使用电解液的锂电池 | 中国 | 201710390183.6 |
46 | 一种多孔材料的制备方法及其在钠离子电池中的应用 | 中国 | 201611152747.4 |
47 | 一种防胀气添加剂及其适用的钛酸锂电池 | 中国 | 201610872147.9 |
48 | 一种高倍率性能空气电极材料及其应用 | 中国 | 201610734164.6 |
49 | 一种硅/石墨烯复合负极材料及其制备方法和应用 | 中国 | 201610832874.2 |
50 | 一种类普鲁士蓝纳米材料的制备方法及其在钠离子电池中的应用 | 中国 | 201510067537.4 |
51 | 改性高能量密度锂离子电池正极材料及其制备方法 | 美国 | 14/438,875 |
52 | 高能量密度锂离子电池氧化物正极材料及其制备方法 | 美国 | 14/579,824 |
53 | 具有纳米铆钉结构的正极材料及其制备方法 | 国际 | PCT/CN2018/082256 |
54 | 一种核壳材料 | 国际 | PCT/CN2018/079942 |
55 | 一种锂离子电池正极膜及其制备和应用 | 国际 | PCT/CN2013/091128 |
56 | 一种适用于钛酸锂电池的新型电解液体系 | 国际 | PCT/CN2013/087876 |
57 | 改性高能量密度锂离子电池正极材料及其制备工艺 | 国际 | PCT/CN2012/085653 |
58 | 一种新型磷酸盐基正极复合材料及其制备方法和用途 | 国际 | PCT/CN2012/081298 |
59 | 高能量密度锂离子电池氧化物正极材料及其制备方法 | 国际 | PCT/CN2012/078726 |